1、散热系统不一样;普通风机内散热风扇跟风机机芯用同一条线,而变频电机中这两个是分开的。所以普通风机变频过低时,可能会因过热而烧掉。
2、变频电机由于要承受高频磁场,所以绝缘等级要比普通电机高,原则上普通电机是不能用变频器来驱动的,但在实际中为了节约资金,在很多需要调速的场合都用普通电机代替变频电机,但普通电机的调速精度不高,在风机、水泵的节能改造中经常这样做。在用普通电机代替变频电机时变频器的载波频率尽量低一点,以减少高频对电机的绝缘损坏。变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。
3、增大了电磁负荷。普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。另外就是变频电机一般分为恒转矩专用电机,用于有反馈矢量控制的带测速装置的专用电机以及中频电动机等。
普通电机和变频电机设计上的区别
1、电磁设计
对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
2、结构设计
在结构设计时,主要也是要考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响。
普通电机和变频电机测量上的区别
1、变频器实际输出波形为PWM波,除了基波外,还包含载波信号。载波信号频率要比基波高得多,且是方波信号,包含大量的高次谐波,对于测试系统则要求有更高的采样频率和带宽。
2、变频器供电的环境下,各种高频干扰无处不在,电磁干扰要比工频环境要强得多,这就要求测试系统有更强的电磁兼容能力。
3、PWM波的峰值因数一般都较高,普通仪表根本满足了要求,对于变频测试系统来说,要求有更高的测量峰值因数测量能力。
4、用于变频测试的仪表应具备在各种PWM波形中分解出其基波的能力,严格测量需采用数字信号处理的方式,也就是高速采样得到样本序列,再对样本序列进行离散傅里叶变换,得到基波有幅值、相位及各次谐波的幅值和相位。
就目前变频测量的主流仪器来说,霍尔传感器加变频功率分析仪是很多厂商的一种选择方式,但是这种方式的局限性在不断扩大,主要表现在传输环节的干扰问题很难解决,这是这种测量方式致命伤。而采用基于前端数字化的功率分析仪可以很好的解决这一问题,这也将成为以后变频测量的主要方式。
变频电机之所以节能,并不是变频电机自身的损耗低,反而在非正弦电压、电流下,高次谐波会引起电动机定子铜耗、转子铜耗、铁耗及附加损耗的都会有所增加。变频电机节能是通过不断调速来适应不同的使用环境,以此来达到减少不必要的损耗的目的,如果同时运行在工频环境中,变频电机与普通电机的区别并不大,甚至变频电机更加耗能,也就是说我们不能盲目的相信变频一定节能的这种宣传。
以上就是变频电机和普通电机之间的区别,用户可以根据其特点,选择合适的电机
所谓一次电路,是电动机绕组工作电流经过的电路元件和导线:二次电路是保证设备正常运行不可缺少的辅助电路.二次电路的主要功能有控制、测量、信号和保护等。使电动机启动运行和停止运行的电路是二次电路的控制功能电路;电压、电流、功率及功率因数等电参数的测量显示是其测量功能;运行和停止指示灯、异常报警声响等是二次信号回路的电路元件:热继电器、电动机保护器等元件可以实现电动机保护功能。下面具体分析电动机直接启动电路的工作过程。
图1中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。
图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。
电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。
电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。
停止指示绿灯HG和运行指示红灯HR分别受接触器的常闭(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上,它们对电动机的运行电流和电压进行。
图2中导线"丁"字形连接的地方无"·"也可。电工图纸中一般无"·"。其实,该处画圆点与否,都符合国标GB4728《电气图用图形符号》的要求,只是在不同的应用领域有各自的画图习惯而已。
2、电动机可逆运行控制电路
为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。
线路分析如下:
一、正向启动:
1、合上空气开关QF接通三相电源
2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。
二、反向启动:
1、合上空气开关QF接通三相电源
2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。
三、互锁环节:具有禁止功能在线路中起安全保护作用
1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。
2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。这样就起到了互锁的作用。
四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。
五、电动机的过载保护由热继电器FR完成。
电动机可逆运行控制接线示意图